Received 19 August 2006 Accepted 29 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kenji Michiue,^a Ian M. Steele^b and Richard F. Jordan^a*

^aDepartment of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois, USA, and ^bDepartment of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Ave., Chicago, Illinois, USA

Correspondence e-mail: rfjordan@uchicago.edu

Key indicators

Single-crystal X-ray study T = 200 KMean σ (C–C) = 0.007 Å R factor = 0.071 wR factor = 0.162 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Bis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)borohydrido]dichloro(2,4,6-tri-*tert*-butylphenolato)titanium toluene solvate

In the title complex, $[Ti(C_{18}H_{29}O)Cl_2(C_{36}H_{40}BN_6)]\cdot C_7H_8$, the Ti atom is coordinated by three N atoms that are constrained to a *facial* arrangement by the Tp^{Ms^*} ligand $[Tp^{Ms^*} = HB(3-mesitylpyrazolyl)_2(5-mesitylpyrazolyl)]$, two chloride ligands and the sterically bulky 2,4,6-'Bu₃-phenolate ligand in a distorted octahedral geometry.

Comment

Activation of group 4 metal $Tp'MCl_3$ complexes (M = Ti, Zr, Hf) that contain sterically bulky tris(pyrazolyl)borate ligands (Tp') using methylalumoxane (MAO) generates ethylene polymerization catalysts with interesting properties, including the production of ultra-high molecular weight polyethylene and high 1-hexene incorporation in ethylene/hexene copolymerization (Murtuza et al. 2002: Michiue & Jordan, 2003, 2004: Gil et al. 2004; Lee & Jordan, 2005). The activity of Tp'MCl₃/ MAO catalysts is strongly influenced by the steric properties of the Tp' ligands, and catalysts that contain the sterically bulky Tp^{Ms} and Tp^{Ms^*} ligands $[Tp^{Ms} = HB(3-mesity|pyrazol$ vl)₃; $Tp^{Ms^*} = HB(3\text{-mesitylpyrazolyl})_2(5\text{-mesitylpyrazolyl})]$ exhibit particularly high activity. As part of a general investigation of sterically crowded Tp^{Ms*}Ti complexes, we have prepared and structurally characterized the title complex, Tp^{Ms*}TiCl₂(O-2,4,6-^tBu₃-Ph), (I).

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are presented in Table 1. The Ti atom is coordinated by three N atoms that are constrained to a *facial* arrangement by the Tp^{Ms^*} ligand, two chloride ligands and the sterically bulky 2,4,6-'Bu₃-phenolate ligand in a distorted octahedral geometry. The 2,4,6-'Bu₃-phenolate ligand is located *cis* to the 5-mesitylpyrazolyl ring, which minimizes steric crowding between the 2,4,6-'Bu₃-phenolate and Tp^{Ms^*} ligands. The N–Ti–N angles formed by the tridentate Tp^{Ms} ligand are acute. The N3–Ti1–N5 angle is larger than both the N1–Ti1–N3 angle and the N1–Ti1–

© 2006 International Union of Crystallography All rights reserved

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms and the solvent molecule have been omitted.

N5 angle owing to steric pressure from the bulky phenolate ligand. The Ti1-N1 distance of the pyrazolyl unit which is *trans* to the phenolate ligand is longer than the Ti1-N3 and Ti1-N5 distances involving the pyrazolyl units which are *trans* to the chloride ligands, because of the difference in the *trans* influence of the substitued phenoxy ligand and the Cl ligands. The Ti-O bond distance is normal and the Ti-O-C37 angle deviates from linearity. The structure of (I) is similar to those of the related complexes $Tp^{Ms^*}TiCl_3$ (Michiue & Jordan, 2003) and [HB(3,5-dimethylpyrazolyl)₃]TiCl₂-(O-'Bu) (Murtuza *et al.*, 2002).

Experimental

An NMR tube was charged with $Tp^{Ms^*}TiCl_3$ (12 mg, 0.016 mmol) and K[O-2,4,6-^{*t*}Bu₃-Ph] (5.0 mg, 0.016 mmol), and toluene was added by vacuum transfer. The tube was warmed to 293 K, which resulted in the formation of a blue suspension that gradually turned to a darkbrown suspension. The tube was stored for 21 days at 293 K, which resulted in the precipitation of crystals of the title compound.

Crystal data

$[Ti(C_{18}H_{29}O)Cl_2(C_{36}H_{40}BN_6)]\cdot C_7H_8$	V = 2888.2 (7) Å ³
$M_r = 1039.90$	Z = 2
Triclinic, P1	$D_x = 1.196 \text{ Mg m}^{-3}$
a = 9.9124 (15) Å	Mo $K\alpha$ radiation
b = 13.656 (2) Å	$\mu = 0.28 \text{ mm}^{-1}$
c = 23.488 (3) Å	T = 200 (2) K
$\alpha = 74.082 \ (3)^{\circ}$	Needle, red
$\beta = 88.828 \ (3)^{\circ}$	$0.24 \times 0.08 \times 0.08 \text{ mm}$
$\gamma = 71.303 \ (3)^{\circ}$	

Data collection

Bruker SMART APEX CCD diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{min} = 0.883, T_{max} = 0.978$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.162$ S = 1.0610192 reflections 672 parameters 21142 measured reflections 10192 independent reflections 6885 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.039$ $\theta_{\text{max}} = 25.1^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0655P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.038$ $\Delta\rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.45 \text{ e} \text{ Å}^{-3}$

 Table 1

 Selected geometric parameters (Å, °).

B1-N6	1.525 (5)	N1-Ti1	2.302 (3)
B1-N2	1.529 (5)	N3-Ti1	2.196 (3)
B1-N4	1.535 (5)	N5-Ti1	2.171 (3)
Cl1-Ti1	2.2350 (12)	O1-Ti1	1.806 (2)
Cl2-Ti1	2.2719 (12)		
N2-N1-Ti1	116.5 (2)	O1-Ti1-Cl2	94.48 (8)
N4-N3-Ti1	118.8 (2)	N5-Ti1-Cl2	84.10 (8)
N6-N5-Ti1	124.3 (2)	N3-Ti1-Cl2	167.12 (8)
C37-O1-Ti1	144.4 (2)	Cl1-Ti1-Cl2	94.88 (4)
O1-Ti1-N5	90.95 (11)	O1-Ti1-N1	168.01 (11)
O1-Ti1-N3	95.71 (11)	N5-Ti1-N1	78.15 (11)
N5-Ti1-N3	87.86 (11)	N3-Ti1-N1	79.07 (11)
O1-Ti1-Cl1	102.11 (8)	Cl1-Ti1-N1	88.82 (9)
N5-Ti1-Cl1	166.94 (8)	Cl2-Ti1-N1	89.41 (8)
N3-Ti1-Cl1	90.67 (8)		

The atom H62 attached to B1 was located in a difference Fourier map, after which it was refined isotropically [B-H = 1.08 (3) Å]. All other H atoms were positioned geometrically (C-H = 0.95 and 0.98 Å) and refined as riding, with $U_{iso}(H)$ values of 1.2 or 1.5 times U_{eq} (parent atom).

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2002); data reduction: *SADABS* (Bruker, 2002); program(s) used to solve structure: *SHELXTL* (Bruker, 2002); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the US Department of Energy (DE-FG02-00ER15036).

References

- Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.02), SADABS (Version 2.03) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Gil, M. P., dos Santos, J. H. Z. & Casagrande, O. L. Jr (2004). J. Mol. Catal. A Chem. 209, 163–169.
- Lee, H. & Jordan, R. F. (2005). J. Am. Chem. Soc. 127, 9384-9385.
- Michiue, K. & Jordan, R. F. (2003). Macromolecules, 36, 9707-9709.
- Michiue, K. & Jordan, R. F. (2004). Organometallics, 23, 460-470.

Murtuza, S., Casagrande, O. L. & Jordan, R. F. (2002). Organometallics, 21, 1882–1890.